3.839 \(\int \frac{\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=261 \[ -\frac{2 \sqrt{a+b} (-2 a C+3 b B-b C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{3 b^2 d}-\frac{2 (a-b) \sqrt{a+b} (3 b B-2 a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b^3 d}+\frac{2 C \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 b d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*(3*b*B - 2*a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^3*d) - (2*S
qrt[a + b]*(3*b*B - 2*a*C - b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/
(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^2*d) + (2*C*Sqrt[a
 + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.436528, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {4072, 4010, 4005, 3832, 4004} \[ -\frac{2 \sqrt{a+b} (-2 a C+3 b B-b C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b^2 d}-\frac{2 (a-b) \sqrt{a+b} (3 b B-2 a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b^3 d}+\frac{2 C \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(3*b*B - 2*a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^3*d) - (2*S
qrt[a + b]*(3*b*B - 2*a*C - b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/
(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^2*d) + (2*C*Sqrt[a
 + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b*d)

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4010

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), I
nt[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Free
Q[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx &=\int \frac{\sec ^2(c+d x) (B+C \sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{2 C \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 b d}+\frac{2 \int \frac{\sec (c+d x) \left (\frac{b C}{2}+\frac{1}{2} (3 b B-2 a C) \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 b}\\ &=\frac{2 C \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 b d}+\frac{(3 b B-2 a C) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 b}+\frac{\left (2 \left (\frac{b C}{2}+\frac{1}{2} (-3 b B+2 a C)\right )\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 b}\\ &=-\frac{2 (a-b) \sqrt{a+b} (3 b B-2 a C) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 b^3 d}-\frac{2 \sqrt{a+b} (b (3 B-C)-2 a C) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac{2 C \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 b d}\\ \end{align*}

Mathematica [A]  time = 16.0296, size = 372, normalized size = 1.43 \[ \frac{2 \sqrt{\sec (c+d x)} \sqrt{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 b (b (3 B+C)-2 a C) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a-b}{a+b}\right )-(3 b B-2 a C) \cos (c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+2 (a+b) (2 a C-3 b B) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a-b}{a+b}\right )\right )}{3 b^2 d \sqrt{\sec ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{a+b \sec (c+d x)}}+\frac{\sec (c+d x) (a \cos (c+d x)+b) \left (\frac{2 (3 b B-2 a C) \sin (c+d x)}{3 b^2}+\frac{2 C \tan (c+d x)}{3 b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(-3*b*B + 2*a*C)*Sqrt[Cos[c + d*x]/(1 +
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a
 - b)/(a + b)] + 2*b*(-2*a*C + b*(3*B + C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((
a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (3*b*B - 2*a*C)*Cos[c + d*x
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^2*d*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[a + b*Sec[
c + d*x]]) + ((b + a*Cos[c + d*x])*Sec[c + d*x]*((2*(3*b*B - 2*a*C)*Sin[c + d*x])/(3*b^2) + (2*C*Tan[c + d*x])
/(3*b)))/(d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.509, size = 1563, normalized size = 6. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/3/d/b^2*(-1+cos(d*x+c))^2*(3*B*cos(d*x+c)^3*a*b-3*B*cos(d*x+c)^2*a*b+C*cos(d*x+c)^3*a*b-2*C*cos(d*x+c)^2*a*
b+C*cos(d*x+c)*a*b-3*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-2*C*sin(d*x+c)*cos(d*x+c)^2*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*a*b+2*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-2*C*sin(d*x+c)*
cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+2*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-3*B*c
os(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+3*B*cos(d*x+c)^2*b^2+3*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*b^2+C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2+2*C*sin(d*x+c)*cos(d*x+c
)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c)
)/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2+C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2+2*C*sin(d*x+c)
*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2-3*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2+3*B*
sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elli
pticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2-3*B*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(
1/2))*b^2-b^2*C-3*B*cos(d*x+c)*b^2-2*C*cos(d*x+c)^3*a^2+2*C*cos(d*x+c)^2*a^2+C*cos(d*x+c)^2*b^2)*((b+a*cos(d*x
+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2/(b+a*cos(d*x+c))/cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \sec \left (d x + c\right )^{3} + B \sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \sec{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt{a + b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)